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Existing analytical treatments of the hypersonic strong interaction problem 
adopt the two-region structure of the classical boundary-layer theory; however, 
the uneven heating and external vorticity created by the highly curved, leading- 
edge shock wave leads to the question of the uniform validity of the boundary- 
layer approximation near the boundary-layer edge. Recently Bush (1 966), 
using a non-linear viscosity-temperature law (p a T", w < 1) instead of the 
linear one (p cc T) used by previous investigators, demonstrated the need to 
analyze separately a transitional layer intermediate between the inviscid region 
and the boundary layer. In  this paper, an asymptotic analysis of the Navier- 
Stokes equations in von Mises's variables, allowing a three-region structure, is 
carried out for the case ofp cc T. Results, with the second-order effects associated 
with heating and vorticity accounted for, show that a separate analysis of the 
transitional region is not strictly necessary in this case, and hence the equivalence 
of the two-region approach is confirmed. On the other hand, it is shown that the 
second-order boundary-layer correction owing to the heating and vorticity 
effects, not considered by Bush, is necessary in order to determine a uniformly 
valid temperature distribution in the physical variables. Numerical results for 
an insulated and a cold flat plate, considerably different from those of others, 
are obtained. 

1. Introduction 
The classical boundary-layer formulation was employed by Lees (1953) to 

study the strong interaction between a hypersonic boundary layer over a flat 
plate and its associated inviscid flow, with two modifications. One modification 
is the simultaneous determination of the boundary layer and its induced pres- 
sure, which is certainly the essence of interaction. The other is the assumption of 
a vanishing temperature a t  the outer edge of the boundary layer, which implies 
a sharp outer edge and is justifiable in view of the high temperature level attained 
in a hypersonic boundary layer. This assumption so simplifies the analysis that 
self-similar solutions for both the inviscid region and the boundary layer were 
obtained by Stewartson (1955). 
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A physical feature in this problem which is absent in classical boundary-layer 
flows is the strong and highly curved shock wave near the leading edge, which 
heats the inviscid flow unevenly and creates an external vorticity. The self- 
similar solution for the inviscid region shows that both the temperature and 
vorticity tend to become infinite near the boundary-layer edge. The self-similar 
solution for the boundary layer, on the other hand, does not provide a tem- 
perature and vorticity behaviour near the outer edge to match. Lees (1956) 
showed that this heating and vorticity effect calls for a higher-order boundary- 
layer correction which is more important in order of magnitude than the classical 
corrections (Van Dyke 1962). Subsequently Oguchi (1958) attempted to refine 
Lees’s estimate of this correction by solving the higher-order boundary-layer 
problem exactly and was able to show that the higher-order solution does pro- 
vide a temperature and vorticity behaviour near the outer edge to match the 
inviscid solution. Unfortunately, errors make his results unreliable. Moreover, 
like Lees, he used the tangent-wedge formula to calculate the correction on the 
induced pressure and the boundary-layer thickness. This is a poor approximation 
for either a monotornic or a diatomic gas as an investigation of the higher-order 
inviscid problem will show. Recently, Matveeva & Sychev (1965) also studied the 
heating and vorticity effect using an inverse approach. 

Accurate results obtained systematically for the higher-order correction owing 
to the heating and vorticity effect in a direct problem therefore remain to be 
given. They are, practically speaking, by no means unimportant and are objec- 
tives of the present study. However, our main concern in this paper is a more 
important basic theoretical point, untouched by previous studies, namely the 
validity of the boundary-layer solution near the outer edge or, in other words, 
the applicability of the two-region flow-field structure assumed in these studies. 
It can be shown that in the boundary layer the leading temperature approxima- 
tion decays exponentially while its higher-order correction decays algebraic- 
ally; hence the leading boundary-layer approximation must fail from the 
asymptotic viewpoint somewhere near the outer edge and possibly also all 
the higher-order approximation. A related point is the ‘sharpness’ of the outer 
edge. One can expect, in connexion with the heating and vorticity correction, 
that the sharp outer edge should really be treated as a layer thinner than the 
boundary layer, and that the temperature (and the vorticity) behaviour under- 
go rapid transition in this layer. There is naturally an associated displacement 
effect of this layer on the neighbouring flow regions. Recently, Bush (1966) 
showed that a transitional layer, intermediate between the inviscid region and 
the boundary layer, has to be analyzed separately in order to obtain a uniformly 
valid first approximation for temperature. However, without the higher-order 
correction in the boundary layer and the inviscid region, his solution must be 
considered incomplete, since the location of streamlines in the transitional layer, 
even to the first approximation, is dependent on the higher-order boundary- 
layer displacement effect. Furthermore, he used a non-linear viscosity-tempera- 
ture law (p a Tw, w < 1) instead of the linear one (p a T) used by others. It 
should not be surprising if the form of the viscosity-temperature law has some 
influence on the flow structure of the viscous regions. 
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In  what follows, we develop an asymptotic analysis from the Navier-Stokes 
equations in von Mises’s variables for a perfect gas obeying a linear viscosity- 
temperature law. In  order to resolve our main concern about uniform validity, 
the flow field bounded by a semi-infinite flat plate and its attached shock wave 
is allowed to be composed of three distinct regions: an inviscid hypersonic small- 
disturbance region, a transitional layer and a boundary layer. Asymptotic 
expansions of the flow quantities, including the higher-order correction owing to 
the heating and vorticity effect, are carried out in each of the regions, in terms of 
a small parameter which represents the order of magnitude of the boundary-layer 
thickness. 
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FIQURE 1. Sketch of hypersonic strong interaction over a flat plate. Hatched area between 
the inviscid region and the boundary layer represents the transitional layer. The solid 
curves with an arrowhead represent streamlines. 

Matching of these expansions is executed in established overlapping regions of 
validity. The successful treatment of the transitional layer depends on the intro- 
duction of a proper variable. Explicit results obtained therefrom show that the 
valid asymptotic solution is exactly the leading boundary-layer approximation 
plus its higher-order correction. Thus we confirm the validity of the two-region 
structure in this case on the basis of a more rigorous, asymptotic analysis and 
elucidate the flow field near the outer edge. We also show by the results that the 
heating and vorticity effect is not only an important correction in the inviscid 
region and the boundary layer, but also a necessary consideration in achieving 
an unambiguous, uniformly valid approximation across the entire flow field. 
Numerical results for an insulated plate and a cold plate are presented. 

In  the sequel of this paper,? the case of w < 1 will be treated for flows over a flat 
plate and a $-powered two-dimensional slender body. The necessity of including 
the heating and vorticity effect in order to achieve unambiguous uniform validity 
will be further demonstrated there. Also, by comparing the present paper and its 
sequel, the influence of the viscosity-temperature law on the flow-field struc- 
ture can be more clearly understoodin detail. Finally we should mention the other 
higher-order corrections of comparable order of magnitude, due to the slip and 

t Presented by the same authors under the title ‘Higher-order approximation in the 
theory of hypersonic boundary layers on slender bodies’ in AGARD Seminar on Numerical 
Methods for Viscous Flows, Teddington, England, September 1967. Manuscript is currently 
under preparation for publication. 
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temperature jump effects. By virtue of the linearity of equations governing the 
higher-order problems, these effects can be studied separately from the heating 
and vorticity effect. Furthermore, these effects are not connected to the main 
theoretical concern of the present paper, and hence they are not included here. 
Also not considered here is the effect of uncertainty about the leading edge, which 
is assumed to be of still higher order, since we do not encounter any indeterminacy 
in our analysis. 

2. Formulation and analysis 
We consider now specifically hypersonic viscous flow over a flat plate (figure 1)  

of a perfect gas obeying a linear viscosity-temperature law. The non-dimensional 

The velocity components u and v (parallel and perpendicular to the flat plate 
respectively), the pressure p ,  the density p, the temperature T and the viscosity 
,u have been non-dimensionalized with respect to free-stream values. The dis- 
tances x and y, measured along and perpendicular to the plate, respectively, 
have been non-dimensionalized with respect to a reference length L. The non- 
dimensional stream function $ is related to y by a@/ay = pu. 

The constant parameters appearing in (1) are the Prandtl number g, the 
free-stream Mach number Mm [ = u, p i  (yp,)-*] and Reynolds number 
R, [=pa u, L/pm].?. To render the results more meaningful, the constant C in 
the viscosity-temperature law should be determined by using an appropriate 
reference temperature (see Cheng, Hall, Golian & Hertzberg 1961, for example). 

t We adopt largely the symbols used by Bush (1966) for easy comparison with his work. 
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The free-stream Mach number is considered to be much greater than unity, 
but its combination with Reynolds number, 8, which represents the order of 
magnitude of the boundary layer, is considered to be much smaller than unity. 
Furthermore, in order to confine our study to the strong-interaction problem, 
we assume that 1/(M%S2) is much smaller than unity and, for the sake of de- 
finiteness, of the order 62 or higher. In  short, the underlying assumptions of 
our analysis are 

M ,  $ 1, S = [CyM2,/R,]~ < 1 and 1/(M2,S2) = O(S2) < 1. ( 2 )  

In  the following, an asymptotic analysis of (1) in terms of the small parameter 
S will be made for the inviscid region, a transitional layer and the boundary 
layer. 

The inviscid region 

The non-trivial inviscid flow bounded by a strong shock wave is induced by the 
presence of the boundary layer, whose thickness is of the order 8. According 
to hypersonic small-disturbance theory, we introduce a set of semi-stretched 
independent variables and expand the flow quantities as follows: 

xh = x, $h = $18, 1 (3) 
u-1 = 82[?kh+euhh+ f f '1, v = 6[vh+Evhh+ . . ' 1 7  

p=yMz82[ph+Ephh+ . . . I ,  T=yM%82[Th+€Thh+ . . . I ,  
P = P h + E p h h +  * * * )  

where e = 82[1-2/(3~)1 and the second terms of the expansions are due to the heat- 
ing and vorticity effect and the displacement effect of the transitional layer. 
Substituting (3) into (1) yields 

Equations (4) and (5) are the equations of hypersonic small-disturbance theory 
and their small perturbations, respectively. Four of them can be integrated to 
yield the Bernoulli equation and the particle isentropic equation and their 
respective perturbations, as follows: 

(6) 

(7) 

2uh +vi+ 2yTh/(y- 1) = function (@h),  ph/& = function (?+kh) 

and Uhh+ vhvhh + YThh/(Y- 1) = function ($h), 

Phh/ph - YPhh/Ph = function (@h)* 
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Although the Navier-Stokes equations are our basis of analysis, the inviscid- 
region approximation up to and including the order considered is purely inviscid, 
as (4) and (5) show; hence we may consistently consider an infinitesimally 
thin shock wave governed by the Rankine-Hugoniot conditions. It is known 
that self-similar solutions exist for (4) and (5) with a power-law shock wave and 
that the corresponding boundary-layer equations will have a self-similar solu- 
tion if the power is $. Thus we assume thgshock wave to be described by 

yS=Ilr ,=6Ax~[1+cax-"+ . . . I ,  n =  ( l - 2 / 3 y ) / 2 ,  (8) 

where the constants A and a are to be determined. The functions of @h in (6) 
and (7) can now be evaluated a t  the shock wave, using the strong Rankine- 
Hugoniot conditions [ l / ( M i 6 2 )  = 0(a2) < 11. We assume also the following self- 
similar transformations: 

where the prime denotes differentiation with respect to &. The necessary bound- 
ary conditions are derived from the strong Rankine-Hugoniot conditions as 
follows: 

(13) 
and %h ( l )  = a[%(1 -fn)/(r + l )  - vk (l)1) 

Gh(l) = a[t( l -$n)/(y+ 1 ) - p j ~ ( 1 ) 1 9  

where the terms V i ( 1 )  and P k ( 1 )  in (13)  result from the expansion of the 
shock position. For a given value of y, (10)  can now be integrated numerically 
inward from the shock-wave position in the leading approximation (Ch = 1); 
so can (11) with the unknown constant a scaled out. Thus the inviscid region is 
solved except for two multiplying factors A and a, which will be determined 
later by matching. 
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The solutions of (10) and (11) have singularities at the body (ch = 0). To 
enable matching with the solutions in the viscous regions and also to aid in the 
numerical integrations, the asymptotic behaviour of these solutions as 
approaches zero must be investigated. The result is that the flow quantities 
in the inviscid region behave near the body like 

u- 1 = -62[A'y00/(y- l ) ] X , q p y ) +  . . .) ] (14) 
ZI = GAx,~ { V, + 36, [2(3y - 2)P0]-l <i--21(37) + CCX," aV,, + . . .}, 
p = YML 6 2 A 2 ~ h &  [Po + E X : X - " ~ & ,  + . . .I, 
T = 6'A26, X; 4 & 'K3y) + . . . , 

where the constants Po = Ph(0) and V, 3 K(0) are determined from integrating 
(lo), the constants Po, = Phh(O4 and V,, 3 Kh(0) are determined from integrating 
(11)  with a = 1, and the constant 6, = (y -  l)P,/{(y+ 1)  [8(y+ 1)E@]1/y}. The 
one-term behaviour for (u - 1) and T in (14) comes from U, and Oh, respectively. 
It can be shown that u,, and @hh behave like O(ci2/(3Y)--$n), therefore, we can 
conclude that the region of validity for the expansions in (3) is 1 3 

In Oguchi's (1958) work, the higher-order inviscid problem defined by (1 1)  
is not solved. Rather, he obtained the constants Po, and V,, by using the tangent- 
wedge formula, which is equivalent to evaluating these constants from the shock 
conditions (13). We shall show later in the section on numerical results that such 
an approximation may introduce significant errors, especially in the evaluation 
of V,,. Also shown later are Newtonian limit values, which are similarly poor 
approximations except in cases of y very close to unity. 

$ ti3. 

The boundary layer 

Although the transitional layer is physically next to the inviscid region, it is 
convenient to deal with the boundary layer first. Here we use a different set of 
semi-stretched independent variables and expansions as follows: 

xb = x = xh, $b = $/a3 = $h/6', 

u = ub+cubb+ . . ., p = yM:6'bb+Epbb+ * ,  a], (15) 

21 = 6[?&+EVbb+ . . .], T = YlM: [ T b + E T b b f  . . .]. 
Note that the order of T and (u- 1) assumed in (15) is significantly different 
from that assumed in (3) for the inviscid region. Substituting (15) into (1) yields 



Equations (16) are the classical boundary-layer equations. Equations (17) are 
simply perturbations to (16) and, therefore, do not acquire from (l} additional 
terms which are absent in (16); equations (17) are homogeneous and the present 
higher-order boundary-layer problem is different from the classical form (see, 
for example, Van Dyke 1962). 

We observe that the pressure (up to and including the second order) does not 
change across the boundary layer. It can also be shown that the pressure remains 
unchanged across the transitional layer. Then, by virtue of matching, the pres- 
sure in the boundary layer must be given by (14). We can now assume the follow- 
ing self-similar forms: 

The transverse momentum equation in both (16) and (17) is automatically 
satisfied by the above assumptions. The other equations are transformed into 
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(20) 
where the prime denotes differentiation with respect to &. 

temperature conditions, namely, 
The boundary conditions at  the flat plate are the no-slip and the constant- 

ub ( O )  = O ,  & ( O )  = O ,  ' b  (O) = Ob,W (21) 

and u b b  (0) = 0, 5,  (0) = 0, Obb (0) = 0. (22) 

In the case of an insulated plate, the constant-temperature condition in ( 2 1 )  
and (22) must be replaced (but not by 0; (0 )  = 0 and OLb (0) = 0, as explained 
in the section on numerical results). The special situation is an insulated plate 
with CT = 1 ,  €or which we have the two integrated relations 

eb = (7- l )  ( l -  U i ) / ( 2 Y )  (23) 

and 'bb = - ( y -  l)ubUbb/Y? (24) 

which are equivalent to the Crocco relation. In this case, the temperature con- 
dition in (21) and ( 2 2 )  is no longer needed. 

In  order to solve ( 1 9 )  and (20 )  we need also the boundary conditions on Ub, 
U b b ,  #b and 6 b b  as approaches infinity. These conditions must be determined 
by matching; therefore, we have to investigate the asymptotic behaviour of the 
various quantities. To begin with, we require that u b  approach unity (in order to 
match) at large t;a. Then it can be shown by substitution that at  large Q equations 
(19)  give 

6 b - - C 1 & -(3~-2)/  exp ( -g{E/8) [ 1  + Kl/C; + . 3 .] + c2C;:b2(y-1)'y [ I  + * .  .], (25 )  

where C, and C, are constants of integration and K ,  = - 4(3y - 2) (2y - l ) / ( g y 2 ) .  
The behaviour associated with C, implies a growing temperature which is incom- 
patible with the matching requirement. Setting C, equal to zero is equivalent 
to enforcing the condition 

8 b + o  as Cb-fm. (26)  
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Ub+l as &,+co (27) 

serves to reject the non-decaying behaviour of (ub- 1) admitted by (19) and 
insures that at  large cb 
u b  = 1+D1jg-lexp(-ci/8)[1+ . . . I  

+ ~ ~ ~ [ a ( l - ~ ) ] - l e ~ ( 3 y - 2 ) / 7 - 2 e x p ( - ~ < ~ / ~ ) [ l + L , / ~ E +  . . . ]  

-[yC,/(y-1)]~;(3y-2)~ye~p(-~~/8)[1+ . . . I  (r = l ) ,  

(B  + 1) ,  
= 1 +D1[<1exp ( -<;/S) [I -4/cE+ . . .] 

where D, is a constant of integration and 

L, = K ,  + S[a( 1 - a)]-, [(5y - 2) (a- +)/y-  421 .  

It is seen from (23) that D, is zero in the case of an insulated plate with r = 1. 
The behaviour of ?i can also be shown by substitution to be 

v, = v, (00) + 0 [exp ( -  c31, (29) 

where &(a) is another constant of integration. Conditions (21), (26) and (27) 
are sufficient to  determine the solution of the first-order boundary-layer problem, 
i.e. (19), including the constants of integration C,, D, and &,(a). 

can be 
shown by substitution to be the following: 

The asymptotic behaviour of the second-order quantities at large 

e b b  = El c; ,'(,Y) [I + K2/!$ + . . .] + 0 [exp ( - <:)I, (30) 

&b = - [ y E , / ( y - l ) ] c ~ 2 ' ( 3 y ) [ l + L 2 / ~ i +  . .  .]+E2<;4n[1+. ..l+O[exp(-CE)] 
(31) 

and V,, = 3E,[2(3y-2)]-1~~-21(3y)[1 +O(c-l)]+E,+O[exp (-<:)I, (32) 

where El ,  E, and E, are constants of integration, and K ,  = 4(3y+ 2)/(9cry2) and 
L, = [y (a-  1) + 11 K,. Now, by inspectionof (14), it is seen that the second-order 
boundary-layer solution behaves consistently with the inviscid solution near 
the boundary-layer edge. Although the boundary-layer solution should match 
formally with the transitional-layer solution, we may, following the practice 
of previous investigators, tentatively determine the outer-edge boundary con- 
ditions for the second-order boundary-layer problem by comparing (14), (30) 
and (31). Thus we are led to specify that 

El = A200P;11(3Y) and E, = 0, 

or ebb <;/(37) + A2 Oo P;'/(37) as cb -+ co (33) 

and lUbb + yebb/(? - )I ctn --f as c b  ++ co- (34) 

Conditions (22), (33) and (34) are sufficient to determine the solution of the second- 
order boundary-layer problem, i.e. (20), including the constant of integration 
E,. The formal matching of the transitional-layer solution with the inviscid 
solution and with the boundary-layer solution can be checked a posteriori. 
The as yet unknown constant a appearing in (20) can be scaled out of the inte- 
gration because of the linearity of these equations and can be determined along 
with the constant A later in the process of matching. 
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The transitional layer 

The motivation for considering an intermediate transitional layer arises from 
the established fact that, whereas the first-order boundary-layer temperature 
decays exponentially, the second-order temperature decays algebraically. Near 
the outer edge (at large Q), although the combined fist- and second-order boun- 
dary-layer solution has a proper temperature behaviour to match that of the 
inviscid flow, the first-order boundary-layer solution already fails to be valid 
as a first approximation and so possibly would all higher-order boundary-layer 
solutions. To prove thevalidity of the combined first- and second-order boundary- 
layer solution as an asymptotic approximation near the outer edge, one can 
try to show that the third-order boundary-layer solution remains of higher order. 
However, a simpler approach is to consider a new set of asymptotic expansions 
for the region in question. 

We note that not only does the temperature undergo transition near the outer 
edge but also the vorticity (u- 1). In  the special case of an insulated plate and 
r = 1, these two transitions are the same, but in general they are slightly different 
[see (25) and (28)]. Fortunately, near the outer edge the energy equation is 
decoupled from the momentum equation since u is close to unity and hence we 
may study the two transitions separately. 

Consider first the temperature transition. From (25) and ( 3 0 ) ,  we see that Tb 
ceases to be the asymptotic solution of (1) in the region where 

~ Y ~ ~ / ( ~ y ) / { ~ ~ ( ~ y - ~ ) / y  exp [ - r<i/8]} = O( 1). 

To treat this region, we define a new set of independent variables of unit order 
as follows: 

The introduction of the last variable is crucial for the success of the subsequent 
analysis. According to (35), the boundary layer corresponds to a small (s, of the 
order e and the inviscid region corresponds to an exponentially large c, of the 
order exp lO(S-4)1. Now, for the sake of convenience, denote the value of Q at  
Ct = 1 as (5* so that 

Q = [8(ln1/s)/a]~(l-((9y-8)(1nln1/~)/[12y(ln1/~)~+ .. .)B 1 (36) 

X t  = x, Ct = e.5$’-*)l(3r)exp (ac@). ( 3 5 )  

and 

Equation ( 3 6 )  relates the small parameter E or S to a new large parameter Q ,  
which is logarithmically large in E or 6. From ( 3 7 ) ,  we observe that the transitional 
layer, where Q is of unit order, is logarithmically far away from the boundary 
layer, yet its extent (Q - Q )  is (much) smaller than the boundary layer by a 
factor of cil. For this reason, it is possible to rewrite the inner limit of the in- 
viscid solution (14) into a Taylor expansion for small (& - &2&P$/~$) .  

The flow variables are assumed to have the following expansions : 

l; = c: + CWn Ct)/aI [ I -  8(9Y - 8 ) / ( 6 y a G )  + 0(1/G)I. (37 )  
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In (38), the assumption for u implies that the subsequent results are independent 
of the (u - 1)  transition. Also to be noted is the assumption that the temperature 
in the transitional layer has an order of magnitude intermediate between the 
inviscid region and boundary-layer temperatures. Substituting (38)  into ( 1 )  
yields 

(39) 

(40) 
aP@Ct = aPt&t = 0, 

watt = avH1act = a U t k , p c t  = 0, 

Equations (39)  merely confirm the statement made in the boundary -layer analysis 
that the pressure remains unchanged across the transitional layer. Equations 
(40) show that the transverse velocity also remains unchanged. The constants A 
and a can now be determined by matching the inviscid behaviour of v in (14) 
to the boundary-layer behaviour. The results are 

and 
(43)  

(44) 

The solution of (41) has the general form 

q = fl(~t:t)lc;t +f2(xt). 

Now, the inner limit of the inviscid solution to be matched is the expansion of 
(14) in the vicinity of P$/xg, for the reason noted earlier. The matching 
at large Ctis thus accomplished by settingf,(x,) = A200 Po1/(37)xtn, and the match- 
ing at  small & with the boundary-layer solution is accomplished by setting 
fl(xt) = C,. In short, we have 

= 

T, = CJQ + A2 Oo P, 'K3y)  X ,  n. (45) 

On the right-hand side of (451, the first term corresponds to the outer limit of 
the first-order boundary-layer solution; and the second term to that of the second- 
order boundary-layer solution. It is clear now that in the transitional layer the 
two boundary-layer solutions are equally important and hence the consideration 
of the second-order boundary layer is necessary. In  a similar manner, we can 
show that the solution of (42), which also fulfils all matching requirements, is 

qt= [K,  - 8(ln Q ) / ( 3 Y 4 l  (QlICt) + [K2 - 8(ln Ct)1(3Y41 A2 4 & 1 / ( 3 y ) v .  (46) 

Comparing (45) and (46) we conclude that the region of validity for the transi- 
tional-layer solution (for the first-order solution at least) is exp lO(<:)l B ct 3 
exp [ - lO(ci)l]. Thus the overlapping region of validity of the transitional-layer 
and the boundary-layer solution is 1 $ lt B exp [ - lO(c$)\] and that of the 
transitional-layer and inviscid solution is exp I O(C$) I 3 Ct 9 1.  Finally, we note 
that the first- and second-order transitional-layer solution is exactly the two- 



On the outer-edge problem of a hypersonic boundary layer 173 

term outer limit of the first- and second-order boundary-layer solution. In  other 
words, the first- and second-order boundary-layer solution is the composite 
expansion for both the transitional and the boundary layer; therefore, the vali- 
dity of the combined first- and second-order boundary-layer solution near the 
outer edge as an asymptotic solution of (1)  is proved. 

Next, let us examine the transition of (u - 1). Because of the different behaviour 
of ub at large & for different Prandtl number and plate conditions, the various 
cases must be discussed separately. The most trivial case is an insulated plate 
with u = 1. The behaviour of (u- 1) is locked to that of T by (23) and (24) and 
we can prove that in the transitional layer 

u = l - € ~ ~ 2 / ( 3 y ) [ y / ( y - l ) ] [ ~ + ~ t / c ~ ~  . . .I.  (47) 

In  the case of u < 1, the transition of (u- 1) occurs slightly ahead of that of 
T (as cb -+ m), in a region where the variable 

s”,=QC[l+ ...I (48) 
is of unit order. In this region, the temperature can be found, from either (45) 
and (46) or the boundary-layer solution, to be 

T = Y ~ % G - ~ ~ ( ~ ~ ) { C , / C ~ +  [cl/(CtG31 [(W) (1 - [1/3yl) (lnCt-21nQ)+K11 
+AV,P;~/(~Y)X;~/~:+ . . .. (49) 

Then, from the streamwise-momentum equation of (1), we can obtain the transi- 
tional-layer solution for u, in the same way as that for T, namely 

8C1 yA28,P; l/(3Y) 
- Y-1 x;~) (lnbt-2,1n~~)])+ . . .. (50) 

In  the case of an non-insulated plate with u = 1, the transition of (u- 1) occurs 
slightly behind that of T, in a region where the variable 

& = &Iyy-l)/r [l + . . .] (51) 

is of unit order. In  this region, the temperature has already undergone its 
transition, and can be found to be 

T = yM& CCZ 2/(3y)  A2 8, P; lK3Y) X; + . . . . (52) 

It can be shown that in this case we have 

We will not discuss in detail the cases of u > 1. 
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In  summary, we find that in any case the transitional-layer solution for 
(u-1)  is again exactly the outer limit of the two-term boundary-layer 
expansion. 

3. Numerical results 
In  the foregoing, the problem of hypersonic strong interaction has been re- 

duced to sets of ordinary differential equations with well-defined boundary 
conditions. These equations must be integrated numerically. To illustrate some 
of the non-trivial details of this procedure and the resulting magnitude of the 
heating and vorticity effect, we treat here two cases: (i) an insulated plate with 
CT = 1, and (ii) a cold plate with Ob,w = O-l(y- l)/y and CT = 2. For both cases, 
results are obtained for y equal to f and $. 

The inviscid equations (10) and (11) are integrated first. The integration from 
the primary position of shock (Q = 1) to the equivalent body (b = 0) is straight- 
forward, except that the singularity at  f& = 0 tends to promote severe numerical 
inaccuracies in its vicinity. To remedy this difficulty, we integrate in terms of a 
transformed independent variable [h = cf7-2)’(97); the singularity is thus ren- 
dered much weaker, if not removed. The resulting numerical values for the 
constants Po, V,, B,, Po, and V,, are listed in table 1.  In  this table the values corres- 
ponding to the Newtonian limit are shown for comparison. Generally, the New- 
tonian values are seen to give a better approximation for the pressure than for 

Y Po VO 80 Po0 voo 
6 - 0.24017 0.35945 0.084189 0.12818 - 0.42938 

(0.26016) (0.19688) 

5 0.27947 0.44340 0.067394 0.19536 - 0.39345 
(0.37574) (0.30257) 

7 - 

1 0.37500 0.75000 - 0.44444 0.58333 
(Newtonian) 

TABLE 1 

the transverse velocity, and a better approximation for the first-order quantities 
than for the second-order quantities. In  particular, the exact numerical results 
yield negative values for V,,, which mean an equivalent-body perturbation in 
the opposite direction of the shock-wave perturbation, contrary to the Newtonian 
result. While this disparity in the perturbations is perhaps unexpected by in- 
tuition, it is physically explainable, since the inward perturbation of the equiva- 
lent body actually makes a more blunt-nosed body. This produces a stronger 
shock near the leading edge, a less dense gas in the shock layer and an outward 
perturbation of the shock-wave shape. For values of y sufficiently close to 
unity, this disparity disappears and the Newtonian limit becomes a better 
approximation. The fact is borne out by exact calculation for y = 1.10, which 
gives Po, = 0.35245 and V,, = 0.05396, and exact calculation for y = 1.01, 
which gives Po, = 0.43387 and V,, = 0.51022. Also shown parenthetically are the 
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values of Po, and qo, calculated by using the shock condition (13), which is 
equivalent to Oguchi's use of the tangent-wedge formula. It is apparent that the 
use of the tangent-wedge formula is not a good approximation in the second- 
order problem and should be avoided. 

0 

0 ' 002' 0.04 

TIYM% 

.L.) 

Ic 

FIGURE 2.  Typical streamwise velocity and temperature profiles; Ob,w = O.l(y- l)/y, 
i.e. T,"/T,, = 0.2, y = g; IT = 4; ez--[1--2/(3")1/2 [(CyMa,)/(R,z)]"-2/c3Y)1/a = 0.2. Dashed 
curves are first approximations and solid curves are second approximations. (B.L.) stands 
for the boundary layer and (I.R.) stands for the inviscid region. 

The boundary-layer equations (19) and (20) are integrated from the plate 
(f& = 0 )  toward the outer edge (&+oo). Since this is a two-point boundary- 
value problem, the integration involves guessing of certain initial values at 
f;b = 0. 
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Because of the singularity at  <b = 0, the integrations are started with the 
help of the following asymptotic series : 

(1.R.) 

0 0.2 

V 

0 %  0 6  

FIGURE 3. Typical transverse velocity and pressure profiles; &,to = O.l(y- I)/?, i.e. 
T,IT, = 0.2; = g ;  = g; ez-[1-z/(3v)J/z [ (CyM2 )/(R,s)][1-2/(3y)1/2 = 0.2. Dashed 

curves are fht  approximations and solid curves are second approximations. (B.L.) stands 
€or the boundary layer and (I.R.) stands for the inviseid region. 

m 

For a constant-temperature plate, a30 is Ob,w and a40 is zero, as specified by (21), 
but trial values for all, a21, a31 and a41 must be used to meet the conditions 
(26 ) ,  (27), (33) and (34). For aninsulatedplate, a31 and zero and the proper 
values for all, agl, a30 and aq0 must be obtained by trial. The remaining a’s can 
be determined by the differential equations in terms of the given and the trial 
a’s. Once the solution of (19) is obtained, the constant A can be determined from 
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(43). The solution of (20) involves the simultaneous determination of the constant 
a by using (44). The linearity of (20) can be exploited to reduce the task of guessing 
the initial values and value for a. The details need not be given here. 

For graphical illustration we present in figures 2 and 3 the numerical results 
for the case of a cold plate with y = 3.  In  both figures, the dashed curves re- 
present the first approximations, corresponding to Stewartson’s (1 955) analysis, 
and the solid curves represent the second approximations, including the effects 
associated with shock heating and external vorticity. It is obvious that the 

Q1 --------- 
Insulated plate Cold plate 
*------7 

Q y = 5  y = l  y = 6  y = ?  

Y~/(Z&,) 1.637 1-189 1.052 0.772 

p/(M&G!) 1.074 0.5534 0.444 0.233 

C,/S: 0.8852 0.5672 0.412 0.281 

C H / s :  - - 0.164 0.118 

QZ 
7- 

Insulated plate 
& 

0.5065 0.5016 

0.2703 0.3506 

y = $  y = +  

-0.1770 -0.0475 
- - 

TABLE 2 

-- 
Cold plate 

-7 

0.559 0-570 

0.298 0.398 

y = $  y = p  

- 0.152 - 0.036 

- 0.089 - 0.021 

second approximations improve the matching between the inviscid solution and 
the boundary-layer solution. The remaining discrepancies between them will be 
reduced if smaller values of ex-[1-2/(3y)l’2 are used. The numerical results sub- 
stituted into (8) and (14) give explicit formulas for the shock-wave shape and 
the surface pressure. Corresponding expressions can also be obtained for the 
skin-friction Coefficient C, = 2P(8U/89) / (prnZ~)  and, in the case of a cold plate, 
the surface-heat-transfer coefficient C, = k(8~/8ij)/[prn;izrn(& - Bw)], where 
the barred quantities are dimensional and k and H denote the coefficient of heat 
conductivity and the total enthalpy respectively. In short, we have 

Q = Ql{l+ &2[S1(x)12-4/(3y)}, (55 )  

where Q refers to a physical quantity, S,(x) = [ ( M ~ C ) / ( R , x ) ] ~ ,  and Q1 and Q2 
are numbers from the numerical results and are listed in table 2. 

The second term in (55 )  represents the correction due to the effects associated 
with shock heating and external vorticity. Since there is no characteristic geo- 
metrical length in this problem, it is obvious that the final results expressed by 
(55) are independent of the choice of reference length L. The product M“,; is 
identical to x used in the literature. 

From the results, we see that the effects associated with shock heating and 
external vorticity displace the shock wave outward and increase the surface 
pressure as also illustrated in figure 3. On the other hand, contrary to the common 
belief, these effects result in a reduction of the skin friction and the surface heat 
transfer. It may be pointed outl that a simplified physical reasoning, based on 
considering the temperature increase at  the boundary-layer edge alone, would 
lead to the conclusion of an increase in the surface heat transfer. A clearer picture 
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can be seen from the typical boundary-layer velocity and temperature profiles 
presented in figure 2. We observe that these effects so displace the streamlines 
as to stretch the profiles, and hence to cause a net reduction of the skin friction 
and the surface heat transfer. Also, the streamlines are displaced outward in 
the outer part of the boundary layer and more so near the edge. This explains 
the comparatively large effect on the shock-wave shape and the pressure. 

4. Concluding remarks 
In the hypersonic strong-interaction problem, because of the effects of shock 

heating and external vorticity, there exists between the inviscid region and the 
boundary layer an intermediate transitional layer which is not present in the 
classical boundary-layer theory. For the case of p cc T, an asymptotic analysis 
of the Navier-Stokes equations shows that the analysis of the transitional layer 
can be avoided by using von Mises’s variables or variables for a similar nature 
as those used by Oguchi (1958), because the first-order boundary-layer solution 
combined with its second-order correction is proved to be the valid asymptotic 
solution for both the transitional and the boundary layer. It is also shown that 
the second-order boundary-layer problem, not considered by Bush (1966), 
must be treated in order to have an unambiguous, uniformly valid temperature 
distribution across the entire flow field. This point will be further demonstrated 
in the analysis of cases of p cc To (w < 1) which, compared with the present 
analysis, will also bring out in detail the influence of the viscosity-temperature 
law on the flow field structure. 

Numerical results have been obtained for an insulated plate with a = 1 and a 
cold plate with = 2. We have demonstrated that the use of tangent-wedge 
approximation in the second-order problem introduces large numerical errors 
for either y = 3 or y = 6, and should be avoided. The numerical results show 
that the effects associated with shock heating and external vorticity influence 
primarily the outer part of the boundary layer and the inviscid region, hence 
the shock-wave shape and the pressure distribution. The influence of these 
effects on the skin friction and the surface heat transfer is numerically small. 
Since the other second-order effects of comparable importance, those due to 
slip and temperature jump, have been shown to have no effect on the surface 
heat transfer (Aroesty 1964), we may conclude from the present analysis that 
the first-order theoretical results for the surface heat transfer should be quite 
satisfactory in comparison with experimental results. However, the comparison 
of the other quantities in theory and in experiment should include the effects 
due to slip and temperature jump which have not been considered here. 

The authors wish to thank Dr W. B. Bush and Dr H. Oguchi for their 
discussions and Mr W. W. Tieman for programming the numerical calculations. 
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